

The Hidden Properties of 20 years Fast Start Pricing

Tongxin Zheng, Feng Zhao, Dane Schiro, Eugene Litvinov

* The views expressed in this presentation do **not** represent those of ISO New England

The Concern

- Start-up (SU), no-load (NL), and incremental offers are used to make commitment and dispatch decisions
- Traditionally, prices are determined by the optimal dual variables of the convex dispatch problem
 - SU and NL costs (i.e., commitment costs) are not reflected in prices

- Concern: Traditional prices are unable to "reflect the actual marginal cost of serving load"*
 - This cost presumably includes Fast Start (FS) commitment costs

^{*} FERC Docket No. RM17-3-000 (December 15, 2016)

The Potential Solutions

- To address the concern, ISOs have proposed and/or implemented a variety of "Fast Start Pricing" methods
 - Each method is meant to, at the very least, incorporate FS commitment costs into prices
- Each FS pricing method has unique properties, some of which are not obvious
- Because the fundamental problem here is nonconvexity, there is no perfect solution

Outline

- Evaluation criteria
- Properties of each FS pricing method
- Fundamental questions on FS pricing
- Conclusion

Pricing Criteria

- Before delving into different FS pricing methods, a set of criteria is needed to evaluate them
- Three principles
 - **1) E**fficiency
 - **2)** Transparency
 - 3) Simplicity

Pricing Criterion: Efficiency

1) Efficiency

- a) Assuming truthful offers, cleared quantities maximize social surplus/minimize total production cost
- b) Given prices and uplift (make-whole + LOC), each unit should want to produce its cleared quantity

Pricing Criterion: Transparency

2) <u>Transparency</u>

- a) "Much is known by many" about transaction prices
- b) Everyone knows the prices that others receive/pay
- In the context of FS pricing, LMPs are transparent and uplift is not transparent

Pricing Criterion: Simplicity

3) Simplicity

- a) As few prices as possible
 - Uniform price at the same location and time
- b) Price formation process should use simple logic
 - Prices are easy to interpret

Categories of Fast Start Pricing

- All FS pricing methods in this presentation derive prices from convex (linear) problems
- Baseline method
 - Fixed commitment pricing
- FS pricing methods
 - Rule-based pricing
 - Convex hull pricing
 - Integer relaxation pricing

Method: Fixed Commitment Pricing

- Unit commitment variables are fixed at optimal values (0 or 1)
 - The resulting linear dispatch problem produces the price
- Prices are derived from incremental costs and do not reflect Commitment costs (SU and NL)

Analysis: Fixed Commitment Pricing

Efficient

- Efficient resource allocation
- Prices and make whole payment ensure online units have adequate dispatch-following incentives

Not transparent

- Make-whole payments can be required by online units
- Lost opportunity costs can be incurred by offline units

Simple

 Price obeys the marginal cost pricing concept (i.e., marginal cost of serving the next MW of load)

Method: Rule-based Pricing

- Price is derived from the dispatch problem with modified FS offers
- Typically, variations of the following pricing rules are used
 - Relax P_{min} to 0 MW
 - Amortize SU cost over minimum run time and P_{max}
 - Amortize NL cost over P_{max}
- These rules do not have a rigorous economic justification

Method: Rule-based Pricing

- Hidden Property: Inconsistent Dispatch & Pricing
 - The price derived using the modified FS offers may be inconsistent with the cleared quantity
 - Lost opportunity costs/special deviation settlement rules may be needed to ensure dispatch following

Analysis: Rule-based Pricing

Efficient

 Combined, prices and uplift ensure that units have adequate dispatchfollowing incentives

Not transparent

- Uplift is needed

Simple

 Price obeys the marginal cost pricing concept (i.e., marginal cost of serving the next MW of load) but is derived from the modified offers

*** ISO-NE DRAFT ***

Method: Convex Hull Pricing

- The Lagrangian dual problem for unit commitment is solved
 - Price is the slope of the convex envelope of total cost w.r.t. load
- **Hidden Property:** *Minimization of total uplift*
 - Price minimizes (make-whole + LOC + transmission/reserve revenue shortfall) over commitment problem's time horizon

Analysis: Convex Hull Pricing

Efficient

 Combined, prices and uplift ensure that units have adequate dispatchfollowing incentives

Not transparent

 Convex Hull Pricing minimizes <u>total</u> uplift (make-whole + LOCs + transmission/reserve collection shortages) but may not eliminate it

Not simple

- Price does not obey the marginal cost pricing concept
 - Price can be the average cost of one or more units (possibly offline)
- Computationally difficult to solve for the true convex hull price

Method: Integer Relaxation Pricing

Relax each binary unit commitment variable

$$\{0,1\} \rightarrow [0,1]$$

While this idea is simple, it has a hidden property

Price is dependent on the problem formulation!

*** ISO-NE DRAFT ***

Example: Integer Relaxation Pricing

	P _{min}	P _{max}	Inc. Cost	Commitment Cost	Initial State
U1	0	100	\$10	0	On
U2	10	25	\$20	\$1000	Off

- Load = 105MW
- U2 ramp limit = 20MW
- Single interval commitment problem, assume U1 is always "On"
- The optimal commitment/dispatch solution is
 - U1: Output = 95 MW
 - U2: "On", Output = 10 MW

Example: Two Equivalent UC Formulations

Formulation 1

Formulation 2

- Both formulations have the same feasible region and optimal solution: $(p_1, x_2, p_2) = (95MW, 1, 10MW)$
- What happens after integer relaxation?

Example: Integer Relaxation of Two Formulations

Relaxed Formulation 1

min
$$10p_1 + 20p_2 + 1000x_2$$

s.t. $p_1 + p_2 = 105$
 $p_1 \le 100$
 $p_2 \le 25x_2$
 $p_2 \ge 10x_2$
 $p_2 \le 20$
 $p_1, p_2 \ge 0$
 $0 \le x_2 \le 1$

Relaxed Formulation 2

min
$$10p_1 + 20p_2 + 1000x_2$$

s.t. $p_1 + p_2 = 105$
 $p_1 \le 100$
 $p_2 \le 25x_2$
 $p_2 \ge 10x_2$
 $p_2 \le 20x_2$
 $p_1, p_2 \ge 0$
 $0 \le x_2 \le 1$

Equivalently,

min
$$1050 + 10p_2 + 1000x_2$$

s.t. $p_2 \ge 5$
 $p_2 \le 25x_2$
 $p_2 \ge 10x_2$
 $p_2 \le 20$
 $p_2 \le 105$
 $p_2 \ge 0$
 $0 \le x_2 \le 1$

Equivalently,

min
$$1050 + 10p_2 + 1000x_2$$

s.t. $p_2 \ge 5$
 $p_2 \le 25x_2$
 $p_2 \ge 10x_2$
 $p_2 \le 20x_2$
 $p_2 \le 105$
 $p_2 \ge 0$
 $0 \le x_2 \le 1$

Relaxed commitment

Example: Feasible Regions of Relaxed Formulations

Relaxed Formulation 1

Relaxed Formulation 2

- Optimal solution
 - U2: Commitment = 0.2,
 Output = 5 MW
 - U1: Output = 100 MW

Optimal solution

U2: Commitment = 0.25,Output = 5 MW

– U1: Output = 100 MW

Example: Integer Relaxation Prices

- What is the LMP for Formulation 1?
 - The next MW of load would be satisfied by U2
 - The binding constraint

$$p_2 \le 25x_2$$

implies a fractional U2 commitment increase (1/25) associated with a 1 MW output increase

$$LMP = 20 + 1000/25 = 60$$

U2 incremental cost

U₂ "amortized" commitment cost

- What is the LMP for Formulation 2?
 - The next MW of load would be satisfied by U2
 - The binding constraint

$$p_2 \le 20x_2$$

implies a fractional U2 commitment increase (1/20) associated with a 1 MW output increase

$$LMP = 20 + 1000/20 = 70$$

U₂ incremental cost

U₂ "amortized" commitment cost

Example Conclusion: Integer Relaxation Pricing

- Integer relaxation pricing depends on the UC formulation
 - Reformulating the UC problem is not unusual; ISOs use reformulations to improve computational performance
 - With integer relaxation pricing, the ISO has to consider the potential effects of UC reformulations on prices
- Without the complete mathematical formulation, integer relaxation is not a well-defined pricing scheme
 - The problem formulation should not impact the market outcome
- Uplift is still necessary

*** ISO-NE DRAFT ***

Analysis: Integer Relaxation Pricing

Efficient

 Combined, prices and uplift ensure that units have adequate dispatchfollowing incentives

Not transparent

- Uplift is needed

Not simple

- Price depends on the UC formulation and is hard to explain
- For real-time single-interval pricing, the ISO <u>cannot</u> directly relax the multi-interval commitment problem
 - Instead, a single-interval "commitment-type" problem that amortizes commitment costs (similar to Rule-based Pricing) must be formulated and relaxed

*** ISO-NE DRAFT **

Summary of FS Pricing Methods

	Efficiency	Transparency	Simplicity
Fixing Commitment	Yes	No	Yes
Rule-based	Yes	No	Yes
Convex Hull	Yes	No*	No
Integer Relaxation	Yes	No	No

There is no perfect price for a nonconvex problem!

^{*}If the size of <u>total</u> uplift is the only measure of transparency, Convex Hull Pricing is the "most transparent" approach

Fundamental Questions on FS Pricing

- What costs should be reflected in price? Is the answer dependent on length of the market interval (e.g., DAM or RTM)?
- How does FS pricing relate to the missing money issue?
- How should Transparency and Simplicity be balanced?
- Does FS pricing inadvertently mimic one-part bidding?

No clear answers from economic theory!

Conclusion

- FS pricing is an imperfect solution for a nonconvex pricing problem
- The Efficiency-Transparency-Simplicity criteria can be used to compare different FS pricing methods
- All existing FS pricing methods have drawbacks
- Hidden properties of FS pricing were discussed
- Broader questions on FS pricing remain unanswered

*** ISO-NE DRAFT ***

Questions

